If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=60t^2
We move all terms to the left:
t-(60t^2)=0
determiningTheFunctionDomain -60t^2+t=0
a = -60; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-60)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-60}=\frac{-2}{-120} =1/60 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-60}=\frac{0}{-120} =0 $
| 4^(x)=1024 | | -6x-7(-3x-5)=185 | | 4x^2+600=0 | | 6(3x+8)=138 | | 0.06x=-96 | | 6x+4(x+19)=196 | | 31x+28=183 | | 45-90d-67-9d= | | X+4x-28=0 | | -4=-5-f | | -9=-k/2-7 | | y+12=5-4 | | 6=6+5(d-2) | | 7=t/3+5 | | 6x-12=2(x+2) | | x/2-5=-12 | | 4x+-4x=-8 | | 2+x=1x+3 | | 5=9-q/5 | | (Y^2)-8y=1 | | 12x2=48 | | 8=4+w/2 | | 10+7x+4/5=-223/5 | | -12x-20=4(-3x-5) | | 9-(1-3y)=4+4-(3-4) | | (Y*y)-8y=1 | | -5x+5-2x+15=-22 | | 3b+5b=−8 | | 2(x+4)+8x=4x+20 | | -5(x-4)=-3x-2(x+10) | | -17=-5+3e | | Y^2-8y=1 |